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Nonlinear measures for characterizing rough surface morphologies
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We develop an approach for characterizing the morphology of rough surfaces based on the analysis of the
scaling properties of contour loops, i.e., loops of constant height. Given a height profile of the surface we
perform independent measurements of the fractal dimension of contour loops, and the exponent that charac-
terizes their size distribution. Scaling formulas are derived, and used to relate these two geometrical exponents
to the roughness exponent of a self-affine surface, thus providing independent measurements of this important
quantity. Furthermore, we define the scale-dependent curvature, and demonstrate that by measuring its third
moment departures of the height fluctuations from Gaussian behavior can be ascertained. These nonlinear
measures are used to characterize the morphology of computer generated Gaussian rough surfaces, surfaces
obtained in numerical simulations of a simple growth model, and surfaces observed by scanning-tunneling
microscopes. For experimentally realized surfaces the self-affine scaling is cut off by a correlation length, and
we generalize our theory of contour loops to take this into account.

PACS number~s!: 05.40.2a, 68.35.Bs, 64.60.Ak, 06.30.2k
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I. INTRODUCTION

Random surfaces are widely used in the physical scien
to model phenomena ranging from the extremely sm
~quantum gravity! to the very large~Earth’s relief!. They
describe crack fronts in materials science@1#, ripple-wave
turbulence@2#, passive tracers in two-dimensional fluid flow
@3,4#, cloud perimeters@5,6#, and shapes of stromatolite
~conjectured fossil accretions of ancient bacteria! @7#, to
mention but a few recent examples. Our focus in this pape
on the morphology of deposited metal films, which deve
random self-affine surfaces under several quite different n
equilibrium growth conditions, as indicated by theoretic
numerical, and experimental results over the past dec
@8,9#.

Surface configurations are parametrized by a tw
dimensional fieldh(x) which represents the height of th
surface above a reference plane$x%. Theoretically the dy-
namics of a growing surface are described by a continu
~Langevin! equation givingdh(x)/dt as a sum of a Gaussia
white noise term, to mimic the random deposition of atom
and a polynomial of various gradients ofh(x), to model
relaxation processes on a coarse grained scale. The non
librium growth behavior is due to the interplay of the dep
sition and relaxation terms.

One would guess that even a snapshot of the morpho
should carry evidence of the nonequilibrium, nonline
growth process which produced it, and should differ meas
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ably from surfaces produced in equilibrium or by a line
process, even if they share the same scaling exponents.
motivates a search for roughness measures independe
the quadratic ones~e.g., the mean-squared height!, which
might identify important distinctions between different su
face models that have similar spatial power spectra. S
measures, although motivated here in the context of s
affine or multiaffine surfaces, should be handy even for s
faces showing no self-affine regime. They can quantify f
tures of morphology which are presently characterized
eye, which should permit a more systematic comparison
tween observations and models than at present. One
imagine that, armed with two or three kinds of roughne
measures tuned to different qualitative aspects of the surf
morphology, one could construct empirical ‘‘phase d
grams’’ in this two- or three-dimensional parameter spa
e.g., mapping out domains in the parameter space that co
spond to various growth conditions.

Given the surface as parametrized by an array
heights—obtained, e.g., from a simulation or a scanni
tunneling-microscope~STM! experiment@10#—we ask, in
what different ways can the surface morphology be char
terized? In general, one requires more than one characte
tion to confirm a match between experimental and simulat
data, or to convincingly verify self-affineness. For the a
plied problems of growing flat surfaces~e.g., for semicon-
ductor devices! or regularly modulated ones~e.g., to nano-
fabricate arrays of quantum dots!, it is also desirable to
develop independent measures that quantify different asp
of a rough surface’s geometry. In this paper, we propose
categories of measure for characterizing spatial correlat
of rough surfaces. These measures are usable on any kin
rough model, and require no dynamical information, so th
should be useful in analyzing not only experiments on so
films, but all the diverse phenomena mentioned above.
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PRE 61 105NONLINEAR MEASURES FOR CHARACTERIZING ROUGH . . .
Outline of the paper

We start with a short review~Sec. II! of self-affine geom-
etry in terms of its real-space, Fourier space, and fra
properties. In Sec. III we introduce the nonlinear measu
the scale-dependent curvature, and the loop measures
which various scaling relations are derived in Sec. IV. Th
scaling relations are modified in the presence of a~time de-
pendent! cutoff length scale, above which the height fluctu
tions are no longer self-affine, and this situation is descri
toward the end of Sec. IV. This concludes the first half of
paper, which deals with the theory of nonlinear measure

The second half of the paper is devoted to analyzing d
obtained in numerical simulations and experimentsusingthe
measures introduced in the first part. It starts off with Sec
where we present the results of our simulations of rand
Gaussian surfaces for various values of the roughness e
nent 0<a<1. These simulations serve to confirm the va
ous scaling relations derived earlier. In Sec. VI the nonlin
measures are applied to a nonequilibrium growth model,
so-called single-step model, which is known to belong to
Kardar-Parisi-Zhang universality class. Finally, in Sec. V
we demonstrate the usefulness of our measures for analy
experimental data on the example provided by a STM im
of a growth roughened metal film. The discussion sect
~Sec. VIII! summarizes our main results, gives a critic
comparison between the newly introduced measures
those used previously, and points out some interesting
directions in which progress can be made. The three ap
dixes are reserved for details of the calculation of the lo
correlation exponent in the case of equilibrium rough s
faces~Appendix A!, details of the derivation of percolatio
exponents for contours of uncorrelated heights~Appendix
B!, as well as a full description of the loop finding algorith
which is at the heart of the numerical simulations and
loop analysis of STM data~Appendix C!.

II. SELF-AFFINE GEOMETRY

Here we review the scaling properties of self-affine int
faces in real space and in Fourier space, as well as the fr
geometry of their level sets. The surface is fully specified
the height fieldh(x), which may be the microscopic heigh
of individual surface atoms above the substrate, as meas
by a STM, or it may be a coarse grained quantity repres
ing the average of individual atomic heights over a reg
@11#. Also, we assume that any overall tilt of the surface h
been subtracted.

The defining property ofself-affinesurfaces is their in-
variance under rescaling. That is, the probability distribut
function ~PDF! for h(x) is such that

h~x!>b2ah~bx! ~2.1!

for any b.1, wherea is the roughness exponent; here the
symbol> means ‘‘statistically equivalent with respect to th
PDF.’’ In other words, if we stretch the surface by a resc
factor b in the horizontal direction~parallel to the reference
planex), then to obtain a statistically equivalent surface,
must stretch by a factorba in the vertical direction@the per-
pendicular direction of the heightsh(x)#. A central theme of
this paper is the different ways of determininga, given a
al
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height profileh(x). A self-affine surface isrough if a.0.
Furthermore, for the surface to exhibit a two-dimension
character~at distances much larger than the surface wid!
the rescale factor in the vertical direction (ba) cannot exceed
the one in the horizontal direction (b), i.e., we require
a<1.

A. Real-space properties

The self-affine scaling of the height is typically measur
by the height-correlation function

D2~r !5^@h~x1r !2h~x!#2&;ur u2a, ~2.2!

where the scaling with separationur u is a direct consequenc
of the self-affine property, Eq.~2.1!, which states thath has a
scaling dimensiona. In experiments, the correlations th
lead to self-affine scaling of the surface develop over tim
which we take to be measured from the start of the dep
tion process. That is, after timet self-affine scaling will be
observed only up to length scales smaller than thecorrela-
tion lengthj(t). Physically the height correlations develo
due to the various surface relaxation processes that
present under the given growth conditions.

Numerical simulations of various surface growth mode
as well as experiments under different conditions, ha
shown thatj grows with the duration of the deposition pro
cess,t, according to the dynamical scaling relation@12#:

j~ t !;t1/z. ~2.3!

It is believed that there are only a few different universal
classes of growth each characterized by the exponentsa and
z @9,12#. Experimental efforts have been focused on extra
ing these exponents from data obtained using vari
surface-sensitive methods: x-ray or helium diffraction, ST
scans, etc.@8# In this paper, we will be almost entirely con
cerned with the spatial~equal-time! correlations.

B. Fourier-space properties

The power spectrum of a self-affine surface

S~q!5^uh̃~q!u2& ~2.4!

is defined in terms of the Fourier transformed height

h̃~q!5E d2xh~x!e2 iq•x. ~2.5!

The height correlation function islinearly related to the
height power spectrum,

D2~r !52E d2qS~q!@12cos~q•r !#, ~2.6!

as is any other translation-invariant expectation quadrati
heights, such as the net variance. Equations~2.6! and ~2.2!
imply the scaling

S~q!;uqu22(11a), ~2.7!
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106 PRE 61KONDEV, HENLEY, AND SALINAS
for small values ofuqu. In the case of a surface with a finit
correlation length,S(q) crosses over to a constant value f
uqu,1/j(t); this situation is discussed in more detail in Se
IV E.

Clearly,S(q) does not uniquely characterize a self-affi
ensemble of surfaces. For example, it is invariant un
h(x)→2h(x), yet surfaces produced in nonequilibriu
growth typically break the up-down symmetry. Furthermo
given any S(q) one can always construct a Gaussian
semble by linear addition of Fourier components—we
this in Sec. V—yet the real growth process is typically no
linear, and the surface is non-Gaussian. Indeed, confirma
of the scaling given by Eqs.~2.2! or ~2.7! in experiments
cannot be interpreted as conclusive evidence for a self-a
geometry: that is a property of the whole ensemble, and
requires proper scaling of all moments and correlations,
just the second moment.

Quadratic roughness measures

The height-correlation function@Eq. ~2.2!#, is the most
standard measure in theoretical discussions, in that ‘‘rou
ness’’ is defined by the divergence of this function as
argumentr approaches infinity.~Nonmonotonic behavior o
this function has also been used@13# to measure the charac
teristic spatial scale of mounds or other patterns innon-self-
affine surfaces.!

On the other hand, the Fourier power spectrum@Eq. ~2.4!#
is central in theoretical derivations but rarely used in exp
mental analysis~except for Ref.@14#!. This seems to be the
best quadratic measure, in that it most cleanly separates
contributions from fluctuations on different length scale
and it shows the sharpest knee~on a log-log plot! where
self-affine scaling is cut off.

Another quadratic measure is the total variance ofh(x) in
a box of sizeb, as a function ofb @15,16#:

^~h~x!2h̄b!2&b , ~2.8!

whereh̄b[^h(x)&b , and^•••&b means the spatial average
only taken over a square of sideb centered onx0; this vari-
ance should be averaged over different choices ofx0.

C. Fractal properties

Self-affine surfaces are fractals only in a generaliz
sense, since the horizontal direction rescales differently fr
the vertical direction. On the other hand, the level set of s
a surface~defined as its intersection with a horizontal plan!
is a fractal object@17#; see Fig. 1 below. Different planes o
intersection give statistically equivalent level sets, since
height fluctuations of a rough surface are unbounded. Le
sets consist of contour loops which are the connected c
ponents. We expect these to be fractal as well, with a fra
dimensionsmallerthan the dimension of the whole level se
which is simply the union of all contour loops of the sam
height. Furthermore, contour loops come in all sizes limi
only by the system size, and an exponent can be defined
characterizes their size distribution. Since contour loops
connected clusters theirgeometricalexponents are analogou
to those defined for percolation clusters.
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We will show that the scaling of contour loops unique
specifies the scaling of the associated self-affine rough
face; this will be expressed in formulas giving the geome
cal exponents in terms of the roughness exponenta. It is
somewhat surprising that, by doing measurements solely
the level set, information can be obtained about the out
plane fluctuations of the surface. For experiments that y
only level-set data without the heights~e.g., electron micro-
scope images of stacks of lamellae in soft matter after t
have been freeze-fractured along a perfectly flat plane@18#!
our contour-loop analysis is theonly route to extracting the
roughness exponent.

III. NONLINEAR MEASURES

In the past the analysis of rough surfaces mostly relied
measures which probed the second moment of the heig
such as the height-correlation function or the power sp
trum @defined in Eqs.~2.2! and ~2.7! below#. But that is
inherently insufficient to distinguish different growth en
sembles or even to verify self-affineness.

Therefore, to more fully characterize rough surfaces,
this section we introduce two types ofnonlinear measures,
i.e., measures that arenot linearly related to the structure
function of the height field. Nonlinear measures of the fi
type ~Sec. III A! are moments of the ‘‘scale-dependent cu
vature’’ a modification of the standard height correlati
function which can identify deviations from Gaussianness
the height fluctuations, in particular the skew~up-down
asymmetry! at various length scales.~We will compare these
to existing nonquadratic roughness measures in the dis
sion part of Sec. VIII.!

Measures of the second type were introduced in Ref.@19#;
they are distributions of three different geometrical quantit
defined for contour loops~or simply ‘‘loops’’! of constant
height, which make up the level sets of the height functi

FIG. 1. Contour plot of aa50.4 random Gaussian surfac
h(X,Y); X andY are in units of the lattice spacing, andL5512 is
the system size.
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These measures are associated with geometrical expo
that characterize contour loops on self-affine rough surfa
the loop correlation exponent, the fractal dimension o
loop, and the length distribution exponent.

A. Scale-dependent curvature

The obvious real-space-based nonquadratic generaliza
of the height-correlation function is

^@h~x1r !2h~x!#3&; ~3.1!

however, this is identically zero on an isotropic surface~and
wheneverr→2r is a symmetry!. To escape this problem
we observe thath(x1r )2h(x) is a sort of first difference a
scaler, and replace it by a sort of second difference. That
we define the ‘‘curvature atx on scaleb’’ as

Cb~x!5 (
m51

M

@h~x1bem!2h~x!#, ~3.2!

where the offset directions$em% are a fixed set of vector
summing to zero. In our numerical implementation of th
measure, where$x% is a square lattice, we choose four su
offsets related by 90° rotations, pointing either along
$10%- or $11%-type directions. These two sets of offse
should give equivalent results~for the sameb), provided the
surface is statistically invariant under rotations in the ref
ence plane. We then define curvature moments^Cb

q& for in-
teger powersq.

The first moment ofCb is manifestly zero; the secon
moment is linearly related to the height-correlation functio

^Cb~x!2&5M (
m51

M

D2~bem!2
1

2 (
m,n51

M

D2„b~em2en!….

~3.3!

@This is shown by inserting Eq.~3.2! and then decoupling
each term of the double sum using the identity (hm
2h0)(hn2h0)51/2$(hm2h0)21(hn2h0)22(hm2hn)2%.#

The higher moments ofCb serve to measure the~possible!
deviation of the height fluctuations from the Gaussian dis
bution. For example, if the surface has up-down symme
h↔2h ~as all Gaussian surfaces do!, ^@Cb(x)#3& vanishes.
On the other hand, non-equilibrium grown surfaces of
have rounded ‘‘hilltops’’ and sharp ‘‘valleys’’; that tends t
make ^Cb

3&.0 a signature of ‘‘skew’’ in the distribution
Similarly, the fourth moment can also be used to test whe
the surface is Gaussian, since in that case

^@Cb~x!#4&/^@Cb~x!#2&253. ~3.4!

For a self-affine surface

^@Cb~x!#q&.constbqa ~3.5!

follows from Eq. ~2.1!; of course the coefficient might b
zero as is the case for oddq, when the height field has up
down symmetry.

Functions such aŝCb
q& ~as a function ofb) or Dq(r ) ~as

a function ofr ) can also be used as ‘‘spectra’’ of the heig
fluctuations fornon-self-affine surfaces. That is, difference
nts
s:
a

ion

,

e

-

:

i-
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er

in the behavior of the function in different ranges ofb or r
reveal qualitative differences of the surface morphology
the corresponding length scales.

In principle, qth order moments may scale with wel
defined exponentsaq , yet the surface is not self-affine sinc
aqÞqa violating Eq. ~3.5!; this is called a ‘‘multifractal’’
or, more precisely, ‘‘multiaffine’’ surface@20#. Slow tran-
sients of multiaffine behavior~up to ;108 steps ind51
11 and;103 steps ind5211) have been seen recently
numerical simulations of growth models@21# ~which, how-
ever, are believed to be asymptotically self-affine!. The
analogous higher order structure functions are a central is
in turbulence, where the violation of self-affine~Kolmog-
orov! scaling is well established and is associated with int
mittency of the velocity field fluctuations@22#.

The scale-dependent curvature can be contrasted
Krug’s height-difference moments@20#,

Dq~r ![^uh~x1r !2h~x!uq&, ~3.6!

a natural generalization of the height-correlation function
ing an absolute value to avoid the trivial cancellation in E
~3.1!. Das Sarma and co-workers@23,21# used Eq.~3.6! to
test for multiaffine behavior~whereby the 1/q power of theq
moment scales with exponentdepending on q, unlike the
simpler self-affine case!. For oddq, Eq.~3.6! is insensitive to
the up-down symmetry~or lack thereof! since it is nonzero
anyhow. Our ‘‘curvature’’ seems to be the simplest functi
that detects the skew locally.

B. Fractal dimension of contour loops

For the remainder of this section, we must define theloop
ensemble. Consider a contour plot of a rough surface with
fixed spacingD between heights of successive level sets. W
take it to be an arbitrary constant much smaller than
typical ~rms! fluctuation ofh(x). The value ofD does not
affect our exponents, and we need to consider it explic
only in the arguments of Sec. IV A; in other places we m
implicitly scale h(x) such thatD51. In STM images of
rough metal surfacesD is usually the height of a single ste
on the surface.

The contour plot consists of closed nonintersecting lin
in the plane that connect points of equal height, which
call contour loops~see Fig. 1!. Every random-surface con
figuration maps to a configuration of contour-loops; wh
the probability weights of the respective configurations
taken into account, this defines a mapping of the rando
surface ensemble to thecontour-loop ensemble. The contour
loop ensemble arising from self-affine random surfaces
~we shall argue! self-similar; the loops are connected cluste
that can be studied using scaling, just as~critical! percolation
clusters have been analyzed in previous work@24#.

For every contour loop in the loop ensemble we defin
loop lengths and a loop radiusR. In all the examples we
study the heights are defined on anL3L square lattice with
lattice constanta. The loop length is measured with a ruler
lengtha while the loop radius~really a diameter! is defined
as the side of the smallest box that completely covers
loop; see Fig. 18.
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In the loop ensemble we define a joint distributionñ(s,R)
~independent of the contour spacingD) such that the numbe
of loops with length in (s,s1ds) and radius in (R,R1dR),
per unit area, is

D21ñ~s,R!ds dR. ~3.7!

The factor D21 has the obvious significance that if on
halves the contour spacing, one has twice as many conto

Assuming that the loop ensemble is scale invariant,
expect thatñ(s,R) has a scaling form

ñ~s,R!;s2yf n~s/RD f !. ~3.8!

HereD f is the fractal dimension, andy is simply related to
the length distribution exponentt, which we define in Sec
III C.

In practice, the exponentD f is measured by the scalin
relation

^s&~R!;RD f , ~3.9!

where

^s&~R![

E
0

`

sñ~s,R!ds

E
0

`

ñ~s,R!ds

~3.10!

is the average loop length for loops whose radius isR. The
scaling in Eq.~3.9! follows immediately from the assume
scaling form in Eq.~3.8!.

The dimension defined in Eq.~3.9! is really thescaling
dimension of the loop length, i.e., it defines the relation
tween larger and smaller loops in the distribution. On
other hand, theproper fractal dimension~either the Haus-
dorff dimensionDH or the self-similarity dimension! refers
to the relation between bigger and smaller pieces of the s
loop. ThusDH is defined bys;a2DH, i.e., how the loop
length scales with the ruler size. When the contour-loop d
tribution is self similar~as we shall assume!, the two kinds of
dimensions are equivalent.

C. Loop length distribution exponent

We define the loop number densityP̃(s) so that
D21P̃(s)ds is thetotal number of loops, per unit area~mea-
sured in sites!, with lengths in (s,s1ds); a related distribu-
tion of loop lengths,P(s), is defined such thatD21P(s)ds is
the number of loops passingthrough a fixed point~say the
origin! with lengths in the range (s,s1ds). In lattice models
~including our numerical examples in Secs. V, VI, and VI!,
s is an integer andP(s) is essentially the probability that th
loop has lengths.

From comparison to Eq.~3.7! it is obvious that

P̃~s!5E
0

`

ñ~s,R!dR. ~3.11!

Since the total number of sites along a loop is equal to
lengths, we have
rs.
e

-
e

e

-

s

P~s!5sP̃~s!; ~3.12!

the additional factor ofs is because each site could be t
origin in the definition ofP(s).

Assuming that the loop ensemble is scale invariant we
define the length distribution exponentt by

P~s!;s2(t21), P̃~s!;s2t. ~3.13!

This is to hold for large contour loops, i.e., those of rad
much bigger than the microscopic scalea. Indeed, inserting
Eq. ~3.8! into Eq. ~3.11! gives Eq.~3.13!, with

y5t11/D f . ~3.14!

On the other hand, we could also defineñ(R) such that
D21ñ(R)dR is the total number of loops, per unit are
whose radius is in the range (R,R1dR). Obviously

ñ~R!5E
0

`

ñ~s,R!ds. ~3.15!

Doing the integral and then eliminatingy using Eq.~3.14!
gives

ñ~R!;R2„11D f (t21)…. ~3.16!

We would have obtained the same result more quickly~and
more dubiously! had we assumed a strict relationship b
tween radius and length,s5(const)RD f , rather than write
Eq. ~3.8!.

D. Loop correlation function

The loop correlation functionG(r ) measures the prob
ability that two points separated byr lie on the same contou
loop. This correlation function is nonlocal, for the conne
edness of the two points depends on every site on the po
of loop between them. Thisloop correlation function should
be distinguished from thelevel-set correlation function
which simply measures the probability that two points se
rated byr are at the same height. For the loop correlati
function to be well defined the contour lines are conside
to be of finite width given by the microscopic scalea. Due to
rotational symmetry of the loop ensemble,G(r ) depends on
r 5ur u only, and for large separations (r @a) we expect it to
fall off as a power law:

G~r !;
1

r 2xl
. ~3.17!

This equation defines the loop correlation exponentxl which
is at the heart of the scaling theory of contour loops dev
oped below.

IV. SCALING RELATIONS

In this section we derive scaling relations among t
roughness exponenta, and the three geometrica
exponents—D f , t, and xl—associated with contour loop
and defined in Sec. III. These formulas are corollaries of
self-affineness of the rough surface@Eq. ~2.1!#. Furthermore,
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PRE 61 109NONLINEAR MEASURES FOR CHARACTERIZING ROUGH . . .
for growth on an initially flat substrate the heights will b
uncorrelated beyond a certain time-dependent length sc
and the large contour loops are best modeled as hull
percolation clusters. This implies a crossover to a differ
set of exponents as worked out in Sec. IV E. The sca
relations—including the finite-size and finite-time forms
Secs. IV D 1 and IV E 1—will serve as a useful tool for an
lyzing the surface morphologies obtained from numeri
simulations and in experiments~see Secs. VI and VII!.

There are three stages of the main derivation. First,
establish a relationship between the self-affine exponena,
the fractal dimensionD f , and the loop-size distribution ex
ponentt; it is analogous to the hyperscaling relation amo
percolation exponents. Second, we find a sum rule~analo-
gous to the susceptibility sum rule! relating the loop correla-
tion exponentxl of Sec. III D, D f , andt. Third, we present
a conjecture that the loop correlation exponent has a v
xl51/2, which is superuniversal in the sense that it is in
pendent ofa. @This conjecture is supported by an exact c
culation of xl in the extreme cases, i.e.,a50 ~equilibrium
rough case! and a51.# Finally, these relations taken to
gether yield formulas forD f andt @Eq. ~4.13!# as functions
of a.

A. Hyperscaling relation

If we parametrize a loop asl(s), wheres is the arc length
as measured by a ruler of lengtha, then after the rescaling
given by Eq.~2.1! it is mapped to

l~s!→b21l~bD fs!. ~4.1!

This scaling property of the contour ensemble justifies
power law dependence ofG(r ) on r andP(s) on s, in Eqs.
~3.17! and ~3.13! respectively.

In writing Eq. ~4.1!, we made a nontrivial hypothesis th
the contours of the height function obtained by coarse gr
ing a given realization ofh(x) are statistically the same a
the coarse-grained version of the contours ofh(x). We know
of no coarse-graining procedure for the height funct
which assures that the contours will stay the same. It w
happen that, near a saddle point ofh(x), two loops~both of
height hlev) approach closely, but the coarse-graining sh
the height of the saddle point acrosshlev so that the coarse
grained versions of the loops coalesce into one lo
Whether this phenomenon makes a relevant contributio
our scaling relations depends on the frequency of close
proaches@25#.

To determine the scaling ofñ(R), first apply the rescaling
equation~2.1! to each configuration ofh(r ); this maps the
contour ensemble to a new contour ensemble with a resc
contour intervalD85b2aD. The total number of contours
with radii in the range (R,R1dR), in a box of sideL, is
L2D21ñ(R)dR, by our definition in Sec. III C. Since the
contours are mapped one-to-one@according to the hypothesi
implicit in Eq. ~4.1!#, we can equate this with the number
new contours in a box of sideL/b and of radius in
(R/b,R/b1dR/b), which is (L/b)2D821ñ8(R/b)dR/b. On
the other hand, by self-affineness the new height ensemb
statistically identical to the original one~for large R); this
le,
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also holds for the new contour ensemble, thusñ8(R)
[ñ(R). So we obtainñ(R/b)5b32añ(R), which implies
the scaling

ñ~R!;R231a. ~4.2!

Equating Eqs.~4.2! and ~3.16! leads to the first scaling
relation ~called ‘‘hyperscaling’’!

D f~t21!522a. ~4.3!

This scaling relation was derived previously by Huberet al.
@26# in a slightly different context, and in a somewhat diffe
ent form by Isichenko and Kalda@27#. Unlike the usual hy-
perscaling relation for percolation clusters which can be
rived from the assumption that the number of large clust
does not grow with scale of observation, here that num
grows as a power with exponenta @28#.

B. Sum rule

A second scaling relation can be derived from a sum ru
To start off, let us separately consider the loop correlat
function for different loop sizess. Let Gs(r ) be the probabil-
ity that point x1r is on the same loop asx, given that the
loop has lengths. In light of the self-similarity of the loop
ensemble, it is reasonable to assume that

Gs~r !;smur u2af Gs~r /s1/D f !, ~4.4!

wherem anda are as-yet undetermined exponents, andf Gs()
is a scaling function. The reason we must scaler by s1/D f is
that this is the typical diameterR of the loop (s;RD f).

Now the sum ofGs(r ) over all lattice points is the expec
tation of the total number of points in the loop, which w
given to bes, hence@substituting from Eq.~4.4!# @29#

s5E d2rGs~r !;s(22a)/D f1m, ~4.5!

which gives one relation between the exponentsa and m
introduced in Eq.~4.4!:

22a5D f~12m!. ~4.6!

On the other hand, the total loop correlation is the integ
of Gs(r ) over the loop distribution functionP(s) given by
Eq. ~3.13!; thus

G~r !5E dsP~s!Gs~r !;r 2a~r D f !m122t5r D f (32t)22,

~4.7!

where~4.6! was used to eliminateboth aandm in the result.
Equating the exponent ofG(r ) in Eq. ~4.7! to the one defined
by Eq. ~3.17!, we obtain the scaling relation

D f~32t!5222xl . ~4.8!

The above scaling relations@Eqs.~4.8! and~4.3!#, can be
combined into expressions~which were originally presented
in Ref. @19#! for the fractal dimensionD f and the exponentt:

D f522xl2a/2, ~4.9!
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t215
22a

22xl2a/2
. ~4.10!

The first scaling relation is reminiscent of the relation

D522a ~4.11!

due to Mandelbrot@17#. The important difference is that Eq
~4.11! gives the fractal dimensionD of the level setof a
random self-affine surface, andnot the fractal dimension of a
single contour loop.~We emphasize this point because the
has been some confusion in the literature where the two
mensions have been equated.!

Olami and Zeitak@30# considered the same loop e
semble, but mostly focused their attention on the ‘‘island
contained in the loops rather than the contours; their ‘‘t ’’
exponent~which we call tZO) refers to the distribution of
island sizes. They derived a formulatZO522a/2 ~in our
notation!. It is easy to show 2(tZO21)5D f(t21)—the
‘‘2’’ here is the fractal dimension of these islands@30#; upon
inserting this conversion, their formula turns out to s
D f(t21)522a, which is the same as our Eq.~4.10!.

C. Loop correlation exponent

Now we turn our attention to the contour correlation e
ponent, and weconjecturethat

xl51/2 ~4.12!

is superuniversal in that it isindependentof a. In the case of
an a50 Gaussian surface, we knowxl51/2 exactly for a
solvable statistical-mechanics model of contour loo
equivalent to the criticalO(2) loop model on the honeycom
lattice @31#. Details are in Appendix A. By invoking univer
sality this is valid for all logarithmically rough random
Gaussian surfaces.

The exact value ofxl can also be determined fora51.
That is, the fractal dimension (D f) of a contour loop must
satisfyD f<D since it is a subset of the level set, which h
dimensionD522a51 @Eq. ~4.11!#. On the other hand
D f>1, since a loop has topological dimension 1. From th
inequalities we conclude that fora51 the fractal dimension
of a contour loop isD f51. This in turn leads toxl51/2,
from Eq. ~4.9!.

The validity of conjecture~4.12! for generala has been
checked, to date, only through the numerical simulations
ported in Sec. V and in numerical simulations of Zenget al.
@32#.

Sincexl51/2 for a50 and 1, a proof of the monotonicit
of xl with a would suffice to establish the conjecture. Ev
that is very difficult owing to the nonlocal definition of th
loop correlation function.

D. Combined scaling relations

Equipped with the~superuniversal! conjectured value of
the loop exponentxl51/2, and the scaling relations,~4.9!
and~4.10!, we find the following formulas for the geometr
cal exponents of contour loops of a self-affine surface w
roughness exponenta:
i-

’

-

,

e

-

h

D f5
32a

2
,

~4.13!

t215
422a

32a
.

These relations form the basis of the contour loop analysi
rough surfaces, which we implement in the following se
tions.

Our formula for D f differs from the one proposed b
Isichenko@33#,

D f
Isichenko5

1023a

7
, ~4.14!

which was derived from an approximate ‘‘multiscale’’ anal
sis. We note that the formula forD f in Eq. ~4.14! gives the
wrong result in thea50 case, whereD f53/2 is exact@34#.

Finite-size scaling

For realistic rough surfaces the self-affine scaling will
cut off at large lengths either by the correlation length or
system size. In the case that self-affine scaling is cut off o
by the system sizeL, we can extend the power laws derive
above for the average loop length, the size distribution
loops, and the loop correlation function, into scaling form

^s&~R,L !5RD f f s~R/L !,

P~s,L !5s2(t21)f P~s/LD f !, ~4.15!

G~r ,L !5ur u22xl f G~ ur u/L !.

In the case that the self-affine scaling is cut off by a fin
correlation lengthj(t),L, our three contour-loop measure
will display crossover effects to a different set of pow
laws; we turn to this problem next.

E. Percolation crossover

For a surface roughened by growth self-affine scaling
expected to hold only up to a finite correlation lengthj(t)
growing with time as Eq.~2.3!. At early enough stages o
growth @i.e., while j(t),L#, the statistics at scales beyon
j(t) depend on the initial state. Then the contour loops of
surface will also exhibit crossover behavior where loo
whose linear size~as measured by the radiusR) is less than
the correlation length will scale according to the formul
derived above, while the large loops will exhibit scaling wi
percolation exponents.

Say the initial surface is flat~which we assume hence
forth!. Then it turns out~see Appendix B! that the contour
loops at scaleR.j(t) are boundaries of percolation cluster
Although this new contour loop ensemble corresponds t
non-self-affine surface, it still exhibits scaling and, we deri
its three loop exponents in terms of known percolation
ponents. In some cases, it turns out that the exponent va
from the percolation regime and from the self-affine surfa
are not so different; thus a careless analysis might yield s
rious exponents.
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PRE 61 111NONLINEAR MEASURES FOR CHARACTERIZING ROUGH . . .
It is easy to see that for distancesr .j(t) we can model
the actual heights~not height differences! as statistically in-
dependent, since~by definition of the correlation length! the
distancej(t) is the farthest that an event can influence a
other in time t. From this, in Appendix B, we derive th
geometrical exponents

D f ,p57/451.75, tp518/752.571, 2xl ,p55/451.25
~4.16!

which apply to loops at scales larger thanj(t) ~the
percolation-regime scaling!. These exponents are the sam
for any a. An important corollary is that power law scalin
in the loop analysis isnot necessarily a signature of sel
affine behavior. Indeed, most real surfaces never reac
clear self-affine regime, hence their loops are probably in
percolation regime.

Finite-time crossover scaling forms

The complete crossover between the self-affine and
colation regimes is described by scaling forms parallel to
~4.15!. First consider the height structure factor. Since,
noted above, the heights are independent, their~spatial!
power spectrum is flat in Fourier space:S(q);const, for
uqu,1/j(t); on the other hand, foruqu.1/j(t) the surface
has already developed a self-affine state, so Eq.~2.7! does
hold. The two behaviors should be combined via a sca
function f S():

S~q;t !5uqu22(11a) f S~qt1/z!; ~4.17!

see Fig. 2~a!.
Thus, at timest such thatj(t)!L, the behaviors~3.9!,

~3.13!, and~3.17! are generalized to

FIG. 2. Percolation crossover. In each figure, the solid line r
resents the function~plotted on a log-log scale! at a certain timet,
and the dashed line represented the same function at a later
whenj(t) has increased. The exponents shown in the figures ar
a51/2, but the qualitative behavior is the same so long as 0,a
,1. Each graph shows a crossover to percolation exponents
‘‘knee’’ which corresponds to a length scale;j(t): ~a! Fourier

spectrum̂ uh̃(q)u2&, ~b! loop correlation functionG(r ), ~c! average
loop length^s&(R), and~d! cumulative distributionP.(s) of loop
lengths~through a given point!.
-

a
e

r-
.

s

g

^s&~R;t !5RD f f sp„R/j~ t !…,

P~s;t !5s2(t21)f Pp„s/j~ t !D f
…, ~4.18!

G~r !5r 22xl f Gp„r /j~ t !….

In each case, the scaling function is unity for argument ze
while for argument large it scales as a power law neede
give the correct exponent for the percolation regime, as
culated in Appendix B 2. Thet dependence for the prefacto
of each percolation-regime power law is given by the
quirement to patch the above two dependences toge
when the scaling-function argument is of order unity.

Figures 2~b!–2~d! illustrate the shapes of the three loo
measures. Notice that the ‘‘knee’’ aroundr 5j(t) appears
more strikingly in the Fourier analysis than in any of the lo
analyses. Although the percolation-regime and self-affine
ponents have fairly similar values, the difference gro
larger asa becomes larger. The crossover is evident in o
simulated Gaussian data~see Fig. 10!.

V. SIMULATION: GAUSSIAN RANDOM SURFACES

Here we test the validity of our scaling relations and t
effectiveness of determininga from contour loops, under the
controlled circumstances provided by computer genera
surfaces with knowna. The surfaces we construct are se
affine with Gaussian fluctuations of the height.

A. Construction

Random Gaussian surfaces are generated numerical
an L/a3L/a matrix h(x) of real-valued heights associate
with the vertices$x% of a square lattice of sizeL, with lattice
constanta. A particular realization ofh(x) is given by Fou-
rier transformingh̃(q) where the wave vectorsq take their
values in the first Brillouin zone@2p/a,p/a#3@p/a,p/a#.
Each Fourier componenth̃(q) is an independent Gaussia
random variable with aq-dependent variance given by

^uh̃~q!u2&5
1

~q2!11a
. ~5.1!

For 0<a<1 surfaces generated in this way are self-affi
and rough, with a roughness exponenta.

Thea50 case of random Gaussian surfaces is familiar
~i! the equilibrium-rough surface@compare Eq.~A1!#, ~ii ! the
surface in the Edwards-Wilkinson model, and~iii ! the Cou-
lomb gas representation of two-dimensional critical mod
@31# ~see Appendix A!. The casea51 appears in the
Mullins-Herring ~diffusive relaxation! model of nonequilib-
rium surface growth@35#.

Comparison to other studies

A popular algorithm for generating self-affine surfaces
‘‘random midpoint displacement, with random success
addition’’ @36,16#. This method iterates a step in whic
starting with a self-affine surface on a coarse grid of latt
constant 2a, one generates heights on a new grid of latt
constanta by interpolation, and then adds to them rando
increments proportional toaa. Such an ensemble need not b
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112 PRE 61KONDEV, HENLEY, AND SALINAS
Gaussian or have up-down symmetry, but commonly d
@16#. We note that~i! the variance of a site’s height~relative
to the initial flat surface! depends on what iteration that si
appeared, i.e., on how many times 2 can be divided into
site coordinates; and~ii ! height-difference correlations do no
always grow with distance~they are smaller between tw
sites that appeared in early iterations! and they have the an
isotropy of the lattice even at large distances. We believe
Fourier construction of self-affine surfaces~Sec. V A! is
preferable because the resulting ensemble is~i! spatially ho-
mogeneous and~ii ! isotropic, on scales beyond a couple
lattice constants.

B. Curvature measurements

We measured momentŝCb
m& (m52, 3, and 4! of the

scale-dependent curvature, as defined in Sec. III A,
Gaussian surfaces generated by the Fourier method desc
above. These data~in Fig. 3! are a kind of check on the
Fourier method, since the mean over an infinite numbe
samples can be computed analytically.

Self-affine scaling is evident on the log-log plot of th
even moments in Fig. 3~upper plot!. The roughness expo
nent 2a is obtained as the slope of a straight-line fit to t
Cb

2 plot. Ideally, the slopes of theCb
2 and Cb

4 log-log plots
should be 2a and 4a, with exactly the inputa values used
in constructing the random surfaces. This is spoiled so
what in practice by discrete-lattice effects forb<3 and by
finite-size effects whenb.L/4. Furthermore,̂ Cb

4&/^Cb
2&2

should be exactly 3 for everyb value, even those for which
the power-law dependence onb fails, since this is true for
any Gaussian random variable. Indeed, the measured ra
close to 3.

The third moment ofCb is shown in Fig. 3. Independen
of a, ^Cb

3& is roughly zero, as expected for a random Gau
ian surface which possesses ah→2h symmetry ~i.e., the
valley bottoms and the hill tops are equivalent for a Gauss
surface!.

FIG. 3. Scale-dependent curvature moments from Gaussian
dom surfaces with roughness exponentsa50.4 ~circles! and 0.8
~triangles!. The third moments~lower plot! are zero confirming the
up-down symmetry. The upper plot shows the second mom
~open symbols! and fourth moments~filled symbols!.
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C. Loop measurements

The primary motivation for our Gaussian surface simu
tions was an initial test of the scaling predictions for t
contour loop exponents from Sec. IV. A contour plot of
sample surface configuration fora50.4 is shown in Fig. 1.
~A similar plot for a50 was published in Ref.@19#.!

1. Measurement procedure

In a single run, which would typically take 10 min on
Sun Sparc5 workstation, 25 surfaces of specified roughn
a were generated. For each surface typically 400 points w
chosen at random, and through each point a contour loop
constructed using the loop finding algorithm as explained
Appendix C. While each loop was being traced points alo
the loop were used to evaluate the loop correlation funct
G(r ). For each contour loop its radius and length were m
sured and used to determine the length distribution of c
tour loopsP(s), and the average loop length^s& as a func-
tion of the loop radiusR.

2. Results

In order to measure the geometrical exponentsD f , t, and
xl , we plotted the data for system sizeL5512 on a log-log
graph and performed least-squares linear fits. Data were
lected for fitting from the range in which a well develope
power law was observed; see Figs. 4, 5, and 6. The res
are given in Table I. We find excellent agreement betwe
the predictions of the scaling theory and the measured g
metrical exponents. In particular, note that the simulatio
confirm the super-universal nature of the loop correlat
exponentxl51/2.

The loop correlation functionG(r ) has a size dependenc
which biases a direct fit to the exponent 2xl ; finite-size scal-
ing ~see below! partially overcomes this systematic erro
Our theory~Sec. IV C! indicates thatG(r ) has a universal
exponent2xl51; in fact, as shown in Fig. 6,G(r ) itself
appears practically independent ofa. Closer examination re-
veals that the coefficient inG(r );1/r decreases slightly a
a grows. Furthermore, the fitted values of 2xl ~see Table I!
decrease a bit witha, which we attribute to the systemati

n-

ts

FIG. 4. Average loop lengtĥs& as a function of loop radiusR,
for random Gaussian surfaces witha50, 0.4, and 0.8~from top to
bottom!; system sizeL5512, and 104 loops were collected. The
‘‘direct’’ D f data in Table I are obtained by linear least-squares
to such plots in the scaling regime, which is roughly 10,R,100.
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PRE 61 113NONLINEAR MEASURES FOR CHARACTERIZING ROUGH . . .
error just mentioned, combined with the smalla-dependence
of the shape of the ‘‘knee’’ in the finite-size behavior of Fi
8. There is no indication in the extracted 2xl values of any
nonmonotonic dependence ona; as shown in Sec. IV C
monotonicity ofxl(a) is sufficient to prove 2xl51, indepen-
dent ofa.

A better measure of the geometrical exponents was
tained from a finite-size scaling analysis of the data. Us
the scaling forms in Eq.~4.15!, we produced data collapse
~‘‘scaling plots’’!. Sample data for thea50.4 case are given
in Figs. 7~a! and 8~a!; the data collapse is shown in Figs. 7~b!
and 8~b!. From the loop-size distribution plots like Fig. 7~b!,
we extracted both the exponentsD f andt22. Similarly, we
obtained 2xl from the loop correlation function@Fig. 8~b!#;
in this case we do not fit another exponent sincer obviously
scales asL1. ~We did not carry out finite-size scaling of th
^s& versusR plots such as Fig. 4, since there was no obvio
change in the slope as a function ofR/L.! The geometrical
exponents giving the best data collapses are reported in
‘‘FSS’’ columns of Table I~see Fig. 9!. The reported uncer
tainties were estimated by the interval over which change
the exponent value did not visibly worsen the data collap

FIG. 5. Cumulative number of loops whose length is larger th
s for random Gaussian surfaces witha50, 0.4, and 0.8~from bot-
tom to top!; system sizeL5512. Here and in all other plots o
P.(s), raw data are binned in intervals of form (s,1.1s).

FIG. 6. Loop correlation function for random Gaussian surfa
with a50, 0.4, and 0.8~from bottom to top!; system sizeL5512.
In this and all such plots, raw data are binned logarithmically
intervals of form (r ,1.1r ). The latter two graphs are offset vert
cally by factors of 10 for clarity; they are virtually identical exce
for a ‘‘knee’’ at slightly differentr values.
b-
g

s

he

in
e.

Note in Table I how the finite-size scaling exponen
agree better with the scaling theory of Sec. IV than the
ponents obtained from ‘‘direct’’ fitting of the data to powe
laws. The discrepancy becomes more obvious at larger
ues ofa. We infer from this that Gaussian surfaces with
large value of the roughness have more pronounced fin
size effects which lead to an overestimate ofD f andt. This
is of relevance to experimental data where the system siz
typically not a tunable parameter, and the geometrical ex
nents are necessarily measured using the direct-fit meth

3. Relation to a previous simulation

Numerical measurements of the fractal dimension of c
tour loops have been done by Avellanedaet al. @37#. They
foundD f51.2860.015 for ana50.5 surface, which is close
to the predicted valueD f51.25, from Eq.~4.13!. They also
measured the combinationD f(t22) ~their ‘‘a ’’ ! which de-
scribes the scaling of the probability that a loop pass
through a fixed point has a radius larger thanr, with r. ~We
evaluate this quantity by integratingn(s,R)5sñ(s,R), from
Eq. ~3.8!, over alls and forR.r). The numerical result they
quote,D f(t22)50.2160.017, is in fair agreement with ou
prediction D f(t22)5(12a)/250.25 for a50.5, which
follows from Eq.~4.13!.

Wagneret al. @36# simulated a form of invasion percola
tion where the threshold pressures have the form of a s
affine surface. Hence the perimeters of the invaded clus
are the same as the contour lines of the surface. T
claimed that the perimeter dimension is ‘‘consistent’’ wi

n

s

FIG. 7. Cumulative loop-size distribution, for random Gauss
surfaces witha50.4. ~a! Data for system sizesL564 (s), L
5128 (n), L5256 (,), and L5512 (*). ~b! Collapse of these
data in a finite-size scaling plot witht2250.225 andD f51.32.
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TABLE I. Geometrical exponentsxl , D f , andt for loops on Gaussian surfaces with various roughn
exponentsa. Columns marked ‘‘direct’’ are from direct fits to a power law of the data from system sizL
5512, inferring 2xl , D f , andt22 from plots such as Figs. 6, 4, and 5. Columns marked ‘‘FSS’’ were fi
to finite-size scaling plots like Figs. 8~b! and 7~b!. According to our conjecture, the ‘‘theory’’ value of 2xl is
1, independent ofa, and this is supported by the measurements here. Notice a slight systematic devia
the ‘‘direct’’ exponents from theory whena.0.5, which we attribute to more severe finite size effects
those cases. The ‘‘theory’’ formulas forD f andt22 are in Eq.~4.13!.

a 2xl D f t22
Direct FSS Direct FSS Theory Direct FSS Theory

0.0 1.07~2! 1.02~2! 1.48~1! 1.50~2! 1.5 0.35~2! 0.33~1! 0.333 . . .
0.2 1.04~1! 0.97~2! 1.39~1! 1.41~2! 1.4 0.30~1! 0.28~1! 0.286 . . .
0.4 1.01~1! 0.98~2! 1.31~2! 1.32~3! 1.3 0.24~1! 0.225~5! 0.231 . . .
0.6 1.00~1! 0.97~2! 1.23~3! 1.19~3! 1.2 0.18~1! 0.165~5! 0.166 . . .
0.8 0.97~2! 0.97~2! 1.15~1! 1.11~2! 1.1 0.12~1! 0.11~2! 0.090 . . .
1.0 0.95~1! 0.96~2! 1.06~2! 1.04~3! 1.0 0.08~2! 0.02~2! 0.000 . . .
;
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Isichenko’s formula@Eq. ~4.14!#, but did not quote an error
perhaps their precision was such that the prediction of
~4.14! could not have been distinguished numerically fro
the one we believe to be correct@Eq. ~4.13!#.

Reference@36# also mentioned measuring a behaviorr 2g

with g'0.9 for the correlation between successive fill
sites. If this were simply a correlation of two randomly ch
sen points along a perimeter, it would be identical to o
loop correlation functionsG(r ) or Gs(r ) defined in Eqs.
~3.17! or ~4.4!; in fact, the filling process would appear t

FIG. 8. System-size dependence of the loop correlation func
G(r ) for Gaussian random surfaces witha50.4. ~a! Data for sizes
L564 (s), L5128 (n), L5256 (,), andL5512 (* ). ~b! Data
collapse of these data with 2xl50.98.
q.

r

depend on correlations of the surface gradient, and m
have a somewhat different exponent.

D. Surfaces with a finite correlation length

To test the percolation analysis of self-affine rough s
faces with a cutoff, as derived in Appendix B and summ
rized in Sec. IV E, we performed curvature and loop me
surements on Gaussian surfaces with a correlation lengtj.
The correlation length is incorporated into the Four
method of generating Gaussian surfaces by changing
variance ofh̃(q) in Eq. ~5.1! to

^uh̃~q!u2&5H uqu22(11a) for uqu.p/jq

~p/jq!22(11a) for uqu<p/jq .
~5.2!

The effects of the cutoff are summarized in Fig. 10, whi
should be compared to the theoretical prediction of Fig.
The curvature and loop data shown in the figure are for s
tem sizeL5512.

The second moment of the curvature displays self-affi
scaling with roughnessa50.4 up to a length scale set byjq ,
and beyond this scale it levels off; see Fig. 10~a!. We
checked that the third moment of the curvature vanishes

n FIG. 9. Fractal dimensionD f and length distribution exponen
t22, as functions of the roughness exponenta of a random Gauss-
ian surface, obtained from finite-size scaling fits~see Table I!. The
solid and dashed lines correspond to the formulas in Eq.~4.13!.
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expected since the height fluctuations are still Gauss
while the fourth moment follows affine scaling up to rough
the same correlation length as the second moment.

The loop measures exhibit distinct crossover behavior
seen in figures Figs. 10~b!–10~d!. For loops whose radius i
smaller than the correlation length, which is herej'20, we
find values of the geometrical exponents consistent w
those extracted previously fora50.4 random Gaussian su
faces. For loops whose linear size exceeds the cutoff, a s
ing consistent with the percolation analysis is found. T
actual numerical values extracted by fitting the 20,R,200
data to a power law are somewhat larger than expe
@2xl51.46(6), D f51.7(1), andt52.63(1)], which we at-
tribute to finite-size and/or crossover effects. To check t
we also simulated a Gaussian surface with completely un
related heights, i.e., withj51 and system sizeL5512, for
which we find~by the direct-fit method!

2xl51.26~3!, D f51.70~2!, t52.565~10! ~5.3!

in good agreement with Eq.~4.16!.

VI. SIMULATION: NONEQUILIBRIUM GROWTH
MODEL

In this section, the linear and nonlinear roughness m
sures of Sec. III, which in Sec. V were tested on artific
Gaussian random surfaces, are now applied to grow
roughened surfaces produced by a simple random depos
model, the well-known ‘‘single-step model.’’ Our results a
in support of the view that the single-step model produ
self-affine morphologies.

FIG. 10. Finite correlation length effects for Gaussian rand
surfaces witha50.4, and a crossover to white noise for wave ve
tors smaller thanp/jq , wherejq516 andL5512 is the system
size. Circles are used for data sets with no cutoff which are inclu
here for comparison with the cutoff data~triangles!. ~a! Squared
curvature function—note the knee atb'15. ~b! Average loop
length as a function of radius—knee atR'20. ~c! Cumulative dis-
tribution of loop sizes—knee ats'100. ~d! Loop correlation
function—knee atr'20.
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A. Single-step model

We implemented the ‘‘single-step model’’@38–40# in d
5211 dimensions@41#. ~More details on this model are
found in Sec. III F of Ref.@38#, or Sec. II A of Ref.@40#.!
There is one control parameterp1 . The allowed configura-
tions are just those of the body centered solid-on-solid~BC-
SOS! model: each site of a square lattice has an integ
valued height and neighboring heights must differ by61.
The Monte Carlo rule is that in each time step a deposit
event occurs with probabilityp1 or an evaporation even
~inverse of a deposition event! occurs with probability 1
2p1 ; once it is decided which type of event occurs, a site
picked at random among those sites at which that even
allowed @42#.

We begin by an overview of the theoretical expectatio
Up-down symmetry switchesp1↔12p1 ; thus we need
only report data for 0,p1<0.5. The casep150.5 is special
as the dynamics satisfies detailed balance. This should
duce an equilibrium-rough interface, namely, the BCS
model with all configurations weighted equally@43#. This
interface, at long wavelengths, is described by the Gaus
model of Sec. V witha50 ~Edwards-Wilkinson behavior!.

On the other hand, the growth model forp1Þ1/2 is be-
lieved to asymptotically belong to the Kardar-Parisi-Zha
~KPZ! universality class@38,40#. It has been proposed tha
a50.4 exactly for the~211!-dimensional KPZ model@44#;
however, finite-size effects, small simulations, and naive
systematically underestimate it asa'0.38@45,46#. The KPZ
behavior should be clearcut whenp1 is close to 1, but oth-
erwise a crossover from initially Gaussian to asympto
KPZ behavior is expected, which will be slow~as a function
of time or system size! if p1 is close to 1/2.

It turns out, in our numerical results~below!, that p1

50.5 indeed shows Gaussian behavior andp150.1 shows
KPZ-like behavior, butp150.3 consistently resemblesp1

50.5, at the sizes we could simulate~i.e., up toL5128). We
attribute this to the above-mentioned crossover from ini
Gaussian behavior.

B. Simulations

Starting from a flat surface, we ran the simulation~for
systems of 1283128 sites! for 2000 Monte Carlo steps
~MCS! per site to equilibrate~for p1Þ0.5 ‘‘equilibrate’’ re-
ally means ‘‘reach the steady-state ensemble’’! and then took
data for a period of 1200 MCS/site; one such run took 10–
h of CPU time on a RISC-6000 workstation. The standa
length runs~for size L5128) appeared to be insufficientl
equilibrated forp150.1, since they failed to collapse o
finite-size-scaling plots with smaller systems. Therefore,
performed one run forL5128, p150.1 with 12000 MCS/
site equilibration and 10000 MCS/site for data collectio
this is the run reported in our results. In all other cases,
believe the run time was adequate, since much shorter
showed no gross differences. We performed about four r
for each valuep150.1, 0.3, and 0.5, verifying the symmetr
p1↔12p1 . @All measures are the same, apart from
change in sign of̂ Cb

3&.# Only one of the;4 runs was se-
lected to be fitted and plotted here; the data sets presente
e.g.,p150.1 are actuallyp150.9 in some cases.

Once every 100 MCS/site~during the data-collecting por
tion of a run!, we performed a measurement step on
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surface. The Fourier transform was taken ofh(r ) using a
fast-Fourier-transform routine, but^uh(q)u2& was accumu-
lated only for q values along the~1,0!, ~0,1!, ~1,1!, and
~1,21! directions. Also, in each measurement step 100 c
tour loops were traced out from random initial points,
described in Sec. V C and Appendix C. Statistics were ac
mulated of the loop’s radiusR and its number of sites
~length! s, but not the loop correlation function.

C. Fourier and curvature results

The single-step model~SSM! is the only one simulated in
this paper for which we evaluated Fourier spectra, which
plotted in Fig. 11; the log-log plot should have a slo
22(11a) so a can be extracted from a linear fit~as in
Table II!. Notice how the spectra are completely isotrop
with respect to the lattice directions.

The scale-dependent curvature moments were not ev
ated during the runs, but were computed only from the fi
surface from each run~hence their statistics are much wor
than for other measures reported here!. We computed
^Cb(x)m& as defined in Sec. III A, form52,3,4, as a function
of the offsetb in the definition ofCb as a discrete Laplacian
The results form52 and 3 are plotted in Fig. 12.~All figures
of the SSM are from the largest system size,L5128.! Figure
12~a! does not show well-defined power laws. The curve
p150.5 shows a smallish apparent slope and a downw

FIG. 11. Power spectrum of the height in the SSM model alo
the@1,0# ~filled symbols! and the@1,1# ~open symbols! directions in
reciprocal space. The data forp50.3 ~triangles! andp150.5 ~dia-
monds! have been shifted with respect to thep150.1 data~circles!
by factors of 0.1 and 0.01 respectively~for clarity!. Note that the
power spectrum is isotropic in Fourier space for small values ofuqu.
-
s
u-

re

lu-
l

r
rd

curvature which is plausibly consistent with the expec
logarithmic behavior, just like that of the usual heigh
difference functionD2(b) @recall Eq.~3.3!, which relates the
two#. The ^Cb

2& curve for p150.1 shows a larger slope
2a'0.6(1), consistent with KPZ scaling. Thea values in
Table II were extracted from fits tôCb

2& plots. Slopes from
plots of the^Cb

4& moments~not shown! are consistent with
4a for the a values in the table.

D. Loop analysis

We analyzed the loop ensemble to plot the mean loop
as a function of its radius~Fig. 13! and the cumulative loop-
size distributionP.(s) ~Fig. 14!. @Note that s must have

g

FIG. 12. Second moment~a! and third moment~b! of the scale-
dependent curvatureCb(x), for surfaces from the single-step mod
with p150.1 (n), p150.3 (s), and p150.5 (* ). In ~b!, the
p150.3 and 0.5 data are consistent with^Cb

3&50, while thep1

50.1 data show a strong~and non-Gaussian! breaking of up-down
symmetry.
model.
igs.

esults
TABLE II. Results of fits to roughness measures applied to surfaces generated by the single-step
The exponent valuesa in the left two columns were derived in two direct ways, from the data plotted in F
12~a! and 11. The direct-fit results~‘‘direct’’ ! for D f andt22 used only theL5128 data~shown in Figs. 13
and 14!; the finite-size scaling results~‘‘FSS’’ ! were obtained using system sizesL532, 64, and 128. The
subheadings ‘‘a ’’ under D f andt22 are estimates of the roughness exponent obtained from the FSS r
by inverting Eq.~4.13!.

p1 a D f t22

^Cb
2& ^uh̃(q)u2& Direct FSS a Direct FSS a

0.1 0.33~2! 0.35~1! 1.38~1! 1.35~2! 0.30~4! 0.30~1! 0.24~1! 0.37~3!

0.3 0.19~4! 0.09~2! 1.47~1! 1.46~2! 0.08~4! 0.38~1! 0.35~1! 20.08(5)
0.5 0.135~2! 0.08~1! 1.51~2! 1.50~2! 0.00~4! 0.40~2! 0.36~2! 20.13(5)



ue

.
o

te
.
es
s

o

ly
th

ble

in

ex-
ugh
ved
up

os-
rim

o
ed
ults

ta,

ut

-

um

t-
.
en-

ss
ec.
r-

his
-

PRE 61 117NONLINEAR MEASURES FOR CHARACTERIZING ROUGH . . .
evenvalues; thus it is necessary to divide the nonzero val
by 2 in order to properly estimateP(s), which was assumed
~in Sec. III and Sec. IV! to be a smooth monotonic function#

As with the Gaussian simulation of Sec. V, the slopes
straight-line fits to log-log plots of these data, give estima
of D f andt22; they are tabulated as ‘‘direct’’ in Table II
Alternatively, we used data like Fig. 14 from smaller siz
L532 and 64~as well asL5128) to produce scaling plot
analogous to Fig. 7~these plots not shown!, extracting the
‘‘FSS’’ data in Table II.@We do not report on 2xl since we
did not evaluate the loop correlationG(r ) in our SSM simu-
lations.#

It is interesting to compare the four different measures
a included in Table II. Those from̂uh(qu2& seem to have the
smallest statistical errors~and the most sensible values!. The
closely related̂ Cb

2& result is expected to be worse, not on
because the statistics are poor in our implementation of
SSM simulation~see above!, but also because it usesh(x)
values from more widely spacedx and is therefore more
sensitive to the system size.

The next best method seems to be theD f loop analysis
from (^s&,R) plots; curiously, it appears that theD f fits show
smaller run-to-run fluctuations than the^uh(qu2& fits. As also
observed in the Gaussian runs~Sec. V!, the P.(s) analysis

FIG. 13. Average loop lengtĥs& as a function of the loop
radiusR for p150.1 (,), p150.3 (s), andp150.5 (* ), in the
single-step model. Note that thep150.3 and p150.5 data are
almost indistinguishable.

FIG. 14. Normalized, cumulative loop-size distribution forp1

50.1 (,), p150.3 (s), and p150.5 (* ), in the single-step
model. Again, thep150.3 andp150.5 plots are almost indistin
guishable.
s

f
s

f

e

showed more obvious finite-size effects; direct fits tot are
unreliable and only finite-size scaling plots give reasona
results.

We remind the reader that in using Eq.~4.13! to calculate
a from D f and t, respectively, we implicitly assumedxl
51/2. Extracting about the samea values fromD f as fromt
is equivalent to havingD f and t satisfy Eq.~4.8! with xl
51/2, which can be verified explicitly from the entries
Table II.

VII. ANALYSIS OF EXPERIMENTAL DATA

In this section we test our nonlinear measures against
perimental scanning tunneling microscopy data sets. Ro
metal surfaces grown under several conditions are belie
to develop a morphology with self-affine scaling, but only
to a time-dependent correlation lengthj(t) as discussed in
Sec. IV E.

The most detailed analysis was done for the vapor dep
ited Ag surface on a quartz substrate of Palasantzas and K
@47#. We obtained a 4003400 height array corresponding t
a STM image of a 702-nm-thick Ag surface, and perform
curvature and loop measurements. Note that all the res
quoted below are from asingle height profile. All in-plane
lengths will be measured in units of the grid of this da
which is 1.625 nm. We also report briefly~Sec. VII C! a less
thorough analysis of an STM data set from a different, b
still self-affine, growth regime showing KPZ scaling.

A. Quadratic measures and curvature moments

Palasantzas and Krim@47# originally evaluated the rough
ness exponent

a50.82~5! ~7.1!

from a fit to the standard~quadratic! height correlation func-
tion D2(r ) defined in Eq.~2.2!. That correlation is similar to
our second curvature moment^Cb

2&. This quantity shows a
power law dependence on the scaleb, up to a correlation
length which was estimated to bej525(5); seeFig. 15~a!.
A linear least-squares fit of the data withb,j gave 2a
51.7(1),agreeing~as expected! with Eq. ~7.1!.

The third moment̂ Cb(x)3& @Fig. 15~b!#, shows distinct
non-Gaussian behavior, as expected for nonequilibri
growth. It reaches a maximum at length scaleb'23 which
correlates well withj. This indicates a morphology consis
ing of grains of typical sizej that are rounded at the top
Such a morphology is clearly seen in three-dimensional r
derings of the STM data in Ref.@47#, or the gray-scale image
in Ref. @48#.

Kleban’s nonlinear measure

Recently, Klebanet al. defined a nonquadratic roughne
measure rather different from any of those mentioned in S
III. First, for every scaleb they constructed a smoothed ve
sionHb(x) of the height function, as the average ofh(x8) for
x8 in a b3b square centered atx ~alternatively by convolv-
ing with a Gaussian weight function of widthb.! Then they
calculated the histogramP(Hb) of Hb(x) values forx rang-
ing over the entire sample, and the skew moment of t
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118 PRE 61KONDEV, HENLEY, AND SALINAS
distribution.@Of course,P(Hb) is defined for a rough surfac
only when a finite-size or finite-time cutoff is present.#

When applied to the STM data of Palasantzas and K
@47#, the distribution ofHb(x) appearsGaussian whenb
50, i.e., for the raw data. That is rather mysterious, since
surface certainly lacks up-down symmetry: it consists
deep, narrow crevasses and rounded hills. Each crev
should contribute to a long tail on only theh,h̄ side of the
distribution, while each hill contributes a peak and a sudd
drop to zero on theh.h̄ side. However, the fluctuation in
height from hilltop to hilltop smears out that sharp featu
making a spuriously symmetric distribution. As pointed o
in Ref. @48#, their smoothing ofh(x) eliminates the deep
crevasses so thesmoothedsurfaceHb(x) doeshave a skewed
height distribution~with skewness dependent on the obs
vation scaleb). This is consistent with our own conclusio
that the height fluctuations are non-Gaussian.

B. Contour-loop analysis

We perform loop measurements and check whether
different scaling relations derived in Sec. IV are satisfi
The moments of the scale dependent curvature are used
independent measurement of the roughness and to asse
Gaussianness of the height fluctuations.

Using the loop algorithm~Appendix C!, we measure the
loop radii and corresponding loop lengths for 1000 cont

FIG. 15. Second moment~a! and third moment~b! of the scale-
dependent curvature, as evaluated for a 702-nm-thick Ag fi
grown on quartz, from the STM data of Palasantzas and Krim~Ref.
@47#!.
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loops constructed through randomly chosen points on
surface; however, we did not compute the loop correlat
function. These loop measures support the scenario tha
surface is self-affine up to a correlation lengthj'25.

The average loop length is plotted against the loop rad
in Fig. 16. We see a decade of power law scaling of
length with the radius, and from a linear least-squares fi
the data to a line, for 5,R,50, we find

D f51.06~2! ~7.2!

for the fractal dimension of contour loops. Using the formu
for D f @Eq. ~4.13!#, we calculatea50.88(4), in good agree-
ment with the reported value@Eq. ~7.1!#. In Fig. 16 the
dashed line corresponds to the percolation valueDh51.75;
we see that loops at scales much larger thanj show scaling
consistent with this value.

Finally, the number of loops whose length exceedss,
P.(s), is plotted in Fig. 17. The data roughly show tw
scaling regimes with different exponents, before they are c
off by the system size. The knee occurs at loop lengths
'70 which, from Fig. 16, corresponds to a loop radius of
or so; this again is comparable to the length scalej'25
found from the curvature data. From loops whose length i
the interval (10,30) we extract the exponent

t2250.069~5!, ~7.3!

while larger loops exhibit scaling consistent with the perc
lation value~indicated by the dashed line!. Using Eq.~4.13!
we find a50.85(1), again in good agreement with the se
affine exponent reported by Palasantzas and Krim. Furt
more, inserting our results~7.2! and ~7.3! into the scaling
relation ~4.8!, we obtain

xl50.51~1!, ~7.4!

in agreement with our fundamental conjecture@Eq. ~4.12!#.
@As also noted at the end of Sec. VI D, Eq.~7.4! is math-

,

FIG. 16. Mean contour lengtĥs& as a function of radiusR, for
the Ag film of Ref. @47#. Here 1000 contour loops were collecte
from the STM data of Ref.@47#. The solid line is the least-square
best fit for radii 2,R,125; its slope is the estimated fractal dime
sionD f . The slope of the dashed line is equal to the hull dimens
of critical percolation clusters.
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ematically equivalent to the already noted agreement of
a values obtained fromD f and fromt using Eq.~4.13!.#

To summarize, the two loop measures we evaluated
well as the moments of the scale-dependent curvature
indicate self-affine scaling with a roughness exponenta
'0.85, up to a length scalej'25. Beyond this scale the
height fluctuations appear to be uncorrelated.

C. Other data sets

The large value ofa found for the silver-on-quartz STM
data of Palasantzas and Krim is indicative of molecul
beam-epitaxy-type growth, which has surface diffusion a
dominant relaxation process. This motivates the study
other data sets which might correspond to different univ
sality classes of growth. For example, the KPZ equation
scribes growth dominated by desorption and/or vacancy
mation, both of which are relaxation processes that do
conserve particle number@8,9#.

Loop measurements were carried out previously on g
electrodeposits by Gomez-Rodriguezet al. @49#. These au-
thors suggested the fractal dimension of contour loops a
useful measure for characterizing the surface morpholo
What was lacking in their analysis was an equation relat
D f to the roughness exponenta. From STM images of de-
posits grown in the fast and slow regimes, they determi
the fractal dimension to beD f'1.5 and 1.3, respectively
Now using Eq.~4.13! we calculate the roughness in the
two regimes to bea'0 and 0.4. The first is expected fo
Edwards-Wilkinson-type growth (a50), while the second is
in good agreement with the Kardar-Parisi-Zhang valuea
50.38 ~from most fits! or 0.40~possibly exact! @45,46#.

Csahoket al. @50# studied the surface morphology of N
films vapor deposited on a quartz substrate.~They were in-
terested mainly in the effects of subsequent ion sputtering
the film.! We obtained a STM image of the as-grown N
surface~before any sputtering! in the form of a 2563256
height array, and computed some of the contour-loop m
sures for it from a collection of 10000 loops. The results

FIG. 17. Cumulative distribution of contour loop lengths fro
STM data, for the Ag film of Ref.@47#. The solid line is the result
of a linear fit to the data in the affine-scaling regime. The slope
the dashed line corresponds to the exponentt22 in the percolation
regime.
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consistent with a~KPZ-like! self-affine morphology with a
roughness ofa50.4. That is, the loop data show a limite
range of scaling for loop radii 10,R,30. Direct fits to a
straight line of the log-log plots of̂s&(R) andP.(s) in the
scaling regime yieldD f51.31(4) andt2250.22(2). After
inverting the formulas forD f(a) andt(a) in Eq. ~4.13! we
obtain the estimatesa50.38(8) and 0.44~4!, respectively.

VIII. DISCUSSION

Here we summarize our main results, compare and
tique previously introduced measures of surface roughn
and describe some open problems and interesting directi

A. Summary of results

We introduced~in Sec. III! measures for characterizin
the spatial correlations of rough interfaces. Their comm
property is that they are not linearly related to the struct
function of the height. First we introduced the sca
dependent curvature. Its third moment is an indicator of
skewness of the height distribution, and thus is a good cr
rion for whether or not a surface’s height fluctuations a
Gaussian. Our chief focus, though, was on the ensembl
contour loopsas a means of characterizing surfaces. Fo
rough self-affine surface, the loop ensemble is critical, a
we introduced three kinds of geometrical exponents ass
ated with it:xl for the loop correlation function~probability
that two points are on the same contour loop!; the fractal
dimension of a contour loop,D f ; andt, associated with the
length distribution of loops. In particular, we conjectured
superuniversalvalue 2xl51 ~see Sec. IV C! which has been
confirmed so far numerically~e.g., in Table I!, but not ana-
lytically. The loop exponents satisfy scaling relations~de-
rived in Sec. IV!, and, granting the conjecture, their valu
are completely determined by the affine~roughness! expo-
nenta.

Next we showed how numerical values of the geometri
exponents can be extracted in practice from height data
tained from simulations or experiments. We first did this
Sec. V for artificial Gaussian surfaces~known analytically to
be self-affine! and in Sec. VI for surfaces obtained from
simulations of the single-step~growth! model~believed to be
self-affine!; this served as a check to confirm the validity
our scaling relations. Then in Sec. VII we processed an
perimental data set—an STM image of a growth roughe
silver film @47#—in the same fashion. The results here a
confirmed the scaling relations which in this case adds to
evidence of the self-affine nature of the height fluctuatio
The third moment of the scale-dependent curvature c
firmed that the height fluctuations are non-Gaussian, w
the contour-loop fractal dimension and size distribution in
cated self-affine scaling witha'0.85.

Experimental data often exhibit self-affine scaling up to
correlation lengthj(t). We argued~in Sec. IV E! that the
loop exponents, for loops whose linear size exceeds the
relation length, are determined by exactly known percolat
exponents. The crossover between the self-affine and pe
lative regime was visible~with a consistentj value! in every
kind of measure on the experimental data in Sec. VII—
same was true for Gaussian random surfaces with an a
cial length scale cutoff~Sec. V D!. The numerical values o

f
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120 PRE 61KONDEV, HENLEY, AND SALINAS
the percolative exponents were confirmed from simulati
of Gaussian surfaces with a white-noise spatial power sp
trum.

Our results~see Sec. V! show that it is quite difficult to
obtain correct results from loop measurements whena is
near to 1. The reason, we believe, is that the crossove
asymptotic behavior occurs at very large loops; the infer
a is thus smaller than the real one. It has been observed@51#
that even the height-height correlation function tends to yi
too small a value ofa as compared to the Fourier pow
spectrum, even though the two measures have, in princ
the same information.

B. Comparisons of roughness measures

Roughness has often been analyzed based on a s
number, the overall variance of the height over the en
system. However, spatial correlations in height fluctuatio
are central to the development of self-affine or other int
esting morphologies. Therefore, every form of roughn
measure we discuss takes the form of a spatialspectrum, i.e.,
one measures an entire function whose argument has dim
sions of length~calleds, R, b, or 1/q). The variation of the
roughness measure with its argument is related to the var
amount of interface fluctuations on the corresponding len
scale.

Some previous measures of the self-affine exponents w
reviewed in Ref.@16#. They systematically compared the di
ferent measures using artificially constructed realizations
h(x) ~only in 111 dimensions!, and concluded that the
single best measure ofa is the Fourier power spectrum, ou
Eq. ~2.4!. @Oddly enough, Ref.@16# did not include the
height correlation function, our Eq.~2.2!, in their selection of
measures to compare.#

Another approach is to measureh(x) along a single line
in thex plane, corresponding to a line scan by the STM@52#.
This section through the surface may then be analyzed as
were a (111)-dimensional profile. Reference@52# evaluated
the variance over an interval of lengthL0, which should
scale asL0

2a , and applied this experimentally to the he
eroepitaxy of CuCl on the~111! surface of CaF2. The most
useful roughness measures have been discussed and crit
in the sections related to them; they fall into three categor
and are summarized here in Table III.

1. Quadratic roughness measures

The most familiar measures arequadratic of which the
first three were summarized in Sec. II B 1. Besides th
well-known quadratic measures, we include a fourth wh
has not been previously applied: the variance of sca
dependent curvature,^Cb(x)2&, which we introduced in Eq
~3.3!. ~Of course, the ensemble expectation cannot depen
x.! Its behavior is very similar to that of the height-differen
correlationD2(r ), so^Cb

2& is of interest mainly for compari-
son with the higher moments ofCb(x). In practical applica-
tions the Fourier spectrum is probably the best of these.

A key fact about the quadratic measures is that, given
complete function for any one of them, one can compute
complete function for any other one as a linear transfo
~convolution with some kernel!. This property is not true for
higher moments. Notice also that the quadratic measures
s
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invariant underh(x)→2h(x), and so cannot possibly cha
acterize the breaking of up-down symmetry in the grow
process. Nor can they identify deviations from Gaussiann
since one can produce a Gaussian ensemble~as in Sec. V A!
with any given Fourier spectrum.

2. Nonquadratic roughness measures

Essentially all of these have been developed by anal
with quadratic measures, simply replacing the second po
by a higher power. Our curvature-moment function seem
be the first generalization of the height-difference functi
that captures the up-down asymmetry.

A simple generalization of theb-box variance is the
b-box qth moment ^@h(r )2h̄b#q&b . The q53 moment
characterizes the up-down asymmetry; when scaled

^@h(r )2h̄b#2&b
3/2 it defines a scale-dependent, dimensionle

skewness that measures the deviation from Gaussian
@53#. This appears to be a simple and attractive measure,
we know of no applications to date; our curvature mom
^Cb

3& is similar in spirit, but probably not linearly related.
We evaluated the quartic curvature moment^Cb

4&, but
these data were less useful than our other measures: the
not reveal the non-Gaussian nature as strikingly as^Cb

3&
does. The dimensionless ratio^Cb

4&/^Cb
2&2 is 3 in the Gauss-

ian case, but may not differ very much in a non-Gauss
ensemble. Furthermore, the roughness exponent was fi
less precisely from̂Cb

4& than from any other measure, prob
ably due to the sensitivity of higher moments to rare even

The analysis in Ref.@48#, summarized in Sec. VII A 1,
appears to be the first application of a scale-depend
roughness measure to characterize the up-down asymm
However, we believe a local roughness measure such as
b-box skewness or~better! our mean cubed curvature gives
more meaningful characterization. In a sense, the smoot
height skewness is the opposite of the local measures sin

TABLE III. Roughness measures.

Quantity Description

Quadratic measures

~1! ^@h(x)2h̄b#2&b
variance inb3b patch

(2) D2(r )
5^uh(r )2h(0)u2& height correlation

~3! ^uh̃(q)u2& Fourier spectrum

~4! ^uCb(x)u2& ‘‘ b-dependent curvature’’ variance

Cubic and other nonquadratic measures

~5! ^@h(r )2h̄b#3&b
skew moment inb3b patch

~6! ^uh(r )2h(0)uq& q-multiaffine height correlation

~7! ^@Hb(r )2h̄#3& skew moment ofb-smoothed height

~8! ^@Cb(x)#3& ‘‘curvature’’ skew moment
~9! ^@Cb(x)#4& ‘‘curvature’’ quartic moment

Loop measures
~10! ^s&R average loop length, given radiusR
~11! P.(s) Prob ~loop throughx is longer thans)
~12! G(r ) loop connectedness correlation functio
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includes the fluctuations from all length scaleslarger thanb,
while the local measures include the fluctuations from sca
comparable to or smaller thanb; only the latter would be
expected to scale asba.

3. Loop measures

The other nonquadratic roughness measures, of cou
are the loop measures defined in Sec. III. The length
connectedness of a loop, manifestly, depend on the hei
h(r ) in a highly nonlinear fashion, and one might expect t
loop exponents to be independent of the roughness expo
a; then the loop properties might have distinguished betw
different universality classes of growth which happen
have similara values. From this viewpoint, it is disappoin
ing that we in fact find the loop exponents are functions oa
~Sec. IV!. Thus for self-affine interfaces the loop measu
ments serve only as a check on other ways~quadratic and
nonquadratic! of measuring a. Furthermore, when the
heights at large separations are uncorrelated, implying
loops are percolation hulls~see Sec. IV E!, the loop plots
show a weaker change of slope at this crossover than
Fourier spectrum does.

It seems worthwhile nevertheless to compute loop m
sures. In a sense they depend on higher order correla
functions of the heights: then the agreement between tha
values extracted from loops and from other measures is
additional, stringent test of self-affineness. Also we emp
cally observe that loop measures, and in particular the a
age loop length as a function of loop radius, are very s
averaging, and measurement ofa from them produces
smaller errors than either the real-space or Fourier-sp
methods. Finally, although the loop exponents are the s
for different universality classes with the samea, we do
expect universal coefficients to be different.

For computer generated height data the loop-size distr
tion is, perhaps, the single most valuable plot, because
different exponents can be obtained from scaling plots s
as Fig. 7. This is not the case for experimental data where
system size is typically not a tunable parameter.

The loop correlation functionG(r ) is most tedious to
compute, and since its exponent 2xl is superuniversal it doe
not yield an estimate ofa. NeverthelessG(r ) is a useful
check on the self-affineness, since the superuniversal be
ior fails in other cases@e.g., beyond the correlation length
see Eq.~4.16!#.

C. Future directions

New experimental techniques which provide compl
real-space images of the fluctuating quantity of inter
~rather than system-wide averages, or local measures pro
the system at only a few points!, are being developed in
every physical science. Consequently, measures which
fully exploit this wealth of information will gain in impor-
tance. In turn, the ability to measure new~and nonlinear!
correlations may inspire new theories that can predict
correlation behavior.

1. Turbulence

Fluid dynamics is a good example of the interplay ju
mentioned between theory and experiment: formerly t
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~sometimes more! point correlations were measured by ho
wire probes, and the same correlations were the object
the Green’s function method. As full images become av
able of the velocity field, many new measures are attemp
in order to capture more of the available information.

Indeed, the measures introduced here might be adapte
a geometrical description of turbulence. The advection
passive tracers by turbulent flows seems to be an espec
promising problem. There is already considerable interes
characterizing the equal-time correlations through frac
measures of the contours of~say! constant tracer concentra
tion @54,3,55,4#. ~To maintain the analog of a surface’s sym
metry under global shifts of the height, one should study
logarithm of the concentration and use contours spac
equally on the logarithmic scale.!

Measurements of the fractal dimension of is
concentration lines of a passive tracer advected by a m
netically driven, turbulent, two-dimensional flow were r
ported by Cardosaet al. @4#. They found D f51.35(5),
which, assuming the concentration field is self-affine, yie
a roughness exponenta5322D f50.3(1). Indeed, a
50.30(3) was measured by the authors, by applying thq
51 multiaffine correlation measure@entry ~6! in Table III#.
We therefore infer that their measurements are consis
with a self-affine morphology for the concentration field. D
tails of the complete loop and curvature analysis of this d
set will be reported in a separate paper@56#.

2. Other dimensions?

In this connection, it is interesting to consider the gen
alizations ofh(x) to spatial dimensions ofx other than 2.
With each higher dimensionality there is greater richness
distinct geometrical measures that can be defined for
surfaces. For a hypersurface in 311 dimensions—like the
concentration function in three-dimensional passive tra
advection—the level set may be multiply connected a
even knotted. Nevertheless the size distribution exponent,
the fractal dimensionD f , andxl of the connectedness co
relations, can be generalized directly. But we see much
reason to expect a superuniversal connectedness correl
exponent in dimensions higher thand5211.

3. Multifractality and scaling relations

Several mysteries remain about the scaling relations
rived in Sec. IV. Above all, there is not yet any rigorous
analytic basis for our fundamental conjecture@Eq. ~4.12!# of
a superuniversal loop correlation that scales as 1/r for all
rough self-affine surfaces—unaffected even by quenched
order that further roughens the interface@32#. A second open
question is to check numerically the correlation exponena
in Eq. ~4.4! for an individual loop of fixed size; we did no
evaluate it in any of our numerical studies, but it should n
be the same as the exponent 2xl for the ensemble averag
over loops of all sizes. Finally, it is intriguing to ask wh
happens in a ‘‘multiaffine’’ system@20,21#. Here different
moments of the height variables have different scaling ex
nents; which of these~if any! is the one entering our formu
las ~4.9! and ~4.10! for the loop exponents?
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APPENDIX A: ANALYTIC DERIVATION OF xl„a50…
FOR AN EXACT SOLUBLE MODEL

Our purpose here is to support the conjecture~4.12! in
Sec. IV C, by showing thatxl51/2 in the case of a lattice
model which can be mapped to an equilibrium-rough s
face. At long wavelengths height fluctuations are descri
by the well-known free energy

F5~constant!E d2xu“h~x!u2, ~A1!

which by equipartition implies Eq.~2.7! with a50, so in-
deed the surface is self-affine. This appendix only summ
rizes arguments made previously in Refs.@19#, @57#, and
@58#.

Consider a statistical model with microscopic heightszj
defined on a triangular lattice$ j ‰, such thatzj changes by 0
or 61 between nearest neighboring sites. The partition fu
tion of the model is

Z5(
$z%

)
^ j ,k&

w~zj2zk!, ~A2!

wherew(0)51 andw(61)5K; the sum goes over all mi
croscopic height configurations unrelated by a global he
shift.

A contour-loop configurationg8 is specified by drawing
closed~periodic boundary conditions ensure that all conto
lines are closed!, oriented, nonintersecting loops along th
bonds of the dual honeycomb lattice, which separate s
that differ in height by61 ~the sign determines the loop
orientation!. In terms of the loops, the partition function is

Z5(
g8

KNb, ~A3!

whereK is the fugacity of an occupied bond~i.e., one cov-
ered by a loop!, andNb is the number of occupied bonds
g8.

This model is equivalent to theO(2) loop model intro-
duced by Nienhuis@31#. This is seen by rewriting the parti
tion function in terms of nonoriented loop configurationsg,

Z5(
g

KNb2Nl, ~A4!
.
d

e

.
e
F

-
d

a-

c-

t

r

es

whereNl is the number of loops ing ~which is the same as
the number of loops ing8), and the 2 appears as a result
summing over the two possible orientations for each loop
g8.

By mapping theO(2) loop model to the four-state ferro
magnetic Potts model on the triangular lattice, Nienh
showed that forKc5A2 the loop model is critical. Using the
Coulomb-gas picture of correlations@31# this implies that
$zj% are rough; since the ‘‘background charge’’ is zero@31#,
it is plausible that~at Kc) the height model is equilibrium
rough, i.e., the fieldh(x) obtained by coarse grainingzj sat-
isfies Eq. ~A1!. Furthermore the contour-loop correlatio
function can be identified in theO(2) model with the so-
called energy-energy correlation function which atK5Kc
decays as a power law with the known exponent

xl51/2, ~A5!

as was to be shown.
Since we view theO(2) loop model simply as one o

many possible lattice discretizations of a logarithmica
rough (a50) self-affine surface, then the exponentxl51/2
should necessarily appear in other lattice models that ma
rough surfaces. Indeed the same value of this exponent
lows also from the exact solution of theO(2) loop model on
the square lattice@59#, and then52 fully packed loop model
on the honeycomb lattice@60#.

APPENDIX B: PERCOLATION SCALING OF CONTOURS
FOR UNCORRELATED HEIGHTS

This appendix derives the scaling behavior of the lo
ensemble when the random heightsh(x) have a finite vari-
ance and@beyond a correlation lengthj(t)# areuncorrelated;
this describes early stages of growth, as in Sec. IV E.

To model the contour loops at length scales greater t
j(t), first coarse grain the system into boxes of sidej(t).
The average heighth̄ in each box is an independent rando
variable parametrized byp(h), the probability thath̄,h.

Defining all the boxes withh̄,h as ‘‘filled’’ simply re-
produces the~uncorrelated! percolation clusters for occu
pancyp(h). Then every contour of constanth is simply the
perimeter of such a cluster. This mapping is well know
from Ref. @61#, and is widely applied in the theory of th
quantum Hall effect@33,61#.

The percolation clusters—as well as their perimeters—
self-similar only atp(h)5pc , the percolation threshold; we
will first discuss their~known! loop exponents. The behavio
when pÞpc can easily be derived from well-known perco
lation scaling relations. The final step will be to integra
these results overp, since the loop ensemble we simula
actually corresponds to the union of perimeter ensembles
all p.

1. Contour loops and critical percolation

Fixing p5pc for a moment, the perimeter loop ensemb
may be characterized by exponentsDh andth , with defini-
tions analogous to Eqs.~3.9! and ~3.13! for D f andt. ~The
subscript ‘‘h’’ stands for ‘‘hull,’’ as the perimeter is often
called.! The fractal dimension
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Dh57/4 ~B1!

is known exactly@34#.
The perimeter loops for percolation atpc also satisfy a

hyperscaling relation analogous to Eq.~4.3!, with a replaced
by zero. That is, the largest cluster~or perimeter! diameter
inside a box of sidel is least; l . From this follows a relation
for th :

th5112/Dh515/7. ~B2!

When pÞpc , the cluster~and perimeter! ensemble scal-
ing is cut off at the percolation correlation lengthjp(p),
which diverges nearpc as

jp~p!;up2pcu2np, ~B3!

where np is the usual percolation correlation-length exp
nent, andnp54/3 is known exactly@62,34#. In this case, the
loop length distribution is

Ph~s;p!5s2(th21)f h„s/jp~p!Dh
…, ~B4!

where f h() is a scaling function, which falls off exponen
tially fast for loops of radius greater thanjp(p).

2. Union of all percolation contours

In the percolation regime, evidently, the statistical pro
erties of the contours of a particular level set depend on
chosen levelh. ~This was impossible in the self-affine re
gime, since in that case the fluctuations ofh were un-
bounded.! But we have previously studied theunion of all
contours with differenth, corresponding to all values ofp(h)
from 0 to 1. That is, indeed, the ensemble sampled by
computer codes~see Sec. V C!. We will now derive the ex-
ponentstp andxl ,p of this ensemble, defined analogously
t andxl in Eqs.~3.13! and ~3.17!.

Most of the loops at a large length scaleR come from
levels sets at heighth with j„p(h)….R, rather than from the
exponential tails of the distribution~B4! for the otherh val-
ues. Thus these obey the percolation scaling and all h
fractal dimensionD f ,p[Dh . This behavior is illustrated in
Fig. 2~c!.

Now, in the percolation regime,P(s) as defined in Sec
III C, is just proportional to the integral ofPh„s;p(h)… over
h. A weighting factorudp/dhu should be included as th
contours are equally spaced, andp(h) is normalized to unity.
Since the large contours come fromp'pc , only that part of
the distribution matters. Inserting Eq.~B3! into Eq.~B4!, one
obtains

P~s!;E dps2(th21)f h„~const!sup2pcuDhnp
…; ~B5!

henceP(s);s2(tp21), with

tp5th1~Dhnp!21518/7. ~B6!

Finally, given Eq.~B6!, the simplest route to the loo
~connectedness! correlation exponent is to use the expone
relation ~4.8!; this gives
-

-
e

ur

ve

t

2xl ,p5422Dh1np
2155/4. ~B7!

Equation ~B7! could alternately be reached by first notin
that the corresponding exponent is 1/2 for the percolat
hull ensemble atpc , and then averaging the loop connecte
ness correlation function analogous to Eq.~B5!.

APPENDIX C: LOOP FINDING ALGORITHM

Given a square latticeL on which the heightsh are de-
fined, and a pointx0 on the dual latticeL* , the task of the
loop finding algorithm is to construct a contour loop of th
surface which passes through the pointx0. The contour is a
walk along the bonds ofL* that cuts those bonds ofL that
have vertices with heights lying above and below the cont
height ~Fig. 18!. To implement this idea we first define th
level heighthlev , which is the average of the four heigh
around the plaquette centered atx0. Second, we assign to a
the sites ofL 1 or 2 signs according to whether they a
above or below the chosen levelhlev . Now, starting fromx0,
we form the contour loop by drawing links on the dual latti
which cross the bonds ofL connecting1 and2 sites. This
is repeated until the walk returns to the starting pointx0; the
finite extent of the latticeL is dealt with by implementing
periodic boundary conditions.

Special care must be taken whenever a ‘‘saddle-poi
plaquette is reached, that is one where the sites of the la
are assigned1212 signs cyclically around the plaquette
In this case four links meet at the point in the center and
must resolve the connectivity there by an additional rule,
as to convert this pattern into two 90 ° turns that are not qu
touching. One natural condition on the rule is that it shou
be reversible, that is one should find the same loop whe
one starts traversing it clockwise or counterclockwise. A s

FIG. 18. Construction of contour loops of a random surface o
lattice. Heightsh(r ) are indicated by numbers in the cells;hlev is
the height of the level set through the chosen point~filled circle!,
while hplaq is the height of the ‘‘saddle point’’~unfilled circle!. Our
definitions of the diameterR and loop lengths are indicated. The
solid arrow connects points on the same loop, and thus contrib
to the loop correlation functionG(r ). The dashed arrow doesnot
contribute: it connects points of the same level set, but they are
disconnected loops.
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124 PRE 61KONDEV, HENLEY, AND SALINAS
ond condition is that it ought to be invariant under reflecti
all heights by h(x)→2h(x). A physically sensible rule
which satisfies both conditions makes use of the aver
height hplaq of the four heights around the saddle-po
plaquette. Ifhplaq,hlev , we view the center of the plaquett
as being lower than the level of the contour loop and
connectivity is resolved by having the1 sitesinsidethe 90°
turns. In the opposite case,hplaq.hlev , the1 sites lieoutside
the 90° turns; see Fig. 18.~The agreement of loop data from
the single-step model with parametersp1 and with 12p1 ,
as explained in Sec. VI was a valuable check of the up-do
symmetry of our loop-finding algorithm.!

Once a contour loop throughx0 has been constructed it
length and radius are recorded, assuming that the loo
topologically trivial. ~Due to periodic boundary conditions
loops with nonzero winding numbers are possible, and th
we discard.! The contour loop lengths is equal to the numbe
of steps made during the loop construction, while the rad
R is the size of the largest square which covers the loop,
the maximum displacement in thex or y direction. Every
topologically trivial loop also contributes to the correlatio
an
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function G(r ); for every point on the loop that is a distanc
r P@ i ,i 11)(i is an integer! away from the starting pointx0,
the array elementg( i ) is increased by 1. Wedefine G(r ) for
our simulations asg(r )/2pr , which asymptotically is nor-
malized the same asG(r ) defined in Sec. III C.

So far we have assumed that the height variables are
and the conditionhplaq5hlev is almost never fulfilled. This is
not the case for interfaces which arise from discrete gro
simulations like the one presented in Sec. VI, where
height variable takes on integer values. In this case the r
lution of the connectivity should be completely random, b
we must ensure that we use the same choice if the l
returns to the same plaquette. The simplest way to do t
which is what we have implemented, is to take the origin
integer heights and ‘‘dither’’ them—add small amounts
random, uncorrelated Gaussian noise to allh(x). This will
also solve the problem of choosinghlev ; it will be nonge-
neric for any two heights to precisely coincide, although t
will happen occasionally as the price of roundoff erro
When this does happen, we start over by choosing a n
initial site x0.
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